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A 2.4 Pauli program and the quantum H-theorem

In 1928, Pauli followed Boltzmann�s procedure to get irreversibility starting from re-

versible dynamics [4]. At the time of Boltzmann, this fact was pointed as a para-

dox, and several arguments were raised against his work. Boltzmann then advanced a

probabilistic explanation that did not contradict microscopic reversibility. In addition,

Boltzmann equation was very successful at explaining transport properties. Using this

equation and the Stosszahlansatz assumption (molecular chaos), he was able to formu-

late his celebrated H-theorem to furnish a statistical mechanical interpretation of the

Second Law of thermodynamics. The molecular chaos assumption is now recognized

as the essential ingredient to obtain irreversibility. In extending Boltzmann�s approach

to Quantum Mechanics, Pauli initiated the study of master equations in quantum

physics. The general idea was to obtain a macroscopic time evolution in term of a

balance equation for the microscopic probabilities. Due to perturbations, a physical

system undergoes transitions among the di¤erent microstates, thus changing the cor-

responding occupation probabilities. Such random perturbations may have di¤erent

origins: molecular collisions in a macroscopic gas, or random �elds acting on an almost

isolated system. In Boltzmann hypothesis of molecular chaos, velocities of colliding

molecules are uncorrelated and independent of position.

If the system has a macroscopic number of degrees of freedom, and the per-

turbations are of random character, one hopes to obtain an irreversible evolution at
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the macroscopic level. Such an equation should be obtained from the Liouville-von

Neumann equation for the density operator, making some �appropriate assumptions�,

which at the end constitute the quantum analog of the Boltzmann�s Stosszahlansatz,

and render the process irreversible. As shown in Section 1.2, if one initially prepares the

density matrix in diagonal form, time evolution will immediately generate o¤-diagonal

elements if we are out of the equilibrium situation. Those o¤-diagonal elements keep

in part information concerning quantum coherence, and will drive the system to recur,

at least partially, from time to time. Pauli suggested that, in the presence of random

interactions, one can neglect o¤-diagonal elements of the density matrix, due to can-

cellations of random accumulated phases. Now, we proceed to show Pauli�s original

deduction. If one represents � in terms of the linear coe¢ cients, as done in Sub-Section

1.1.5, one writes:

< nj�(t)jm>=
X
i

wi a
(i)
n (t)a

(i)�
m (t) � an(t)a�m(t) ;

where members of the ensemble are written in the form j (i)(t) >=
P

n a
(i)
n (t)jn > in

relation to a �xed basis fjn >g. Using the polar representation for the coe¢ cients

a(i)n = r(i)n exp i�
(i)
n ;

with both r(i)n and �(i)n real and time dependent, one gets

< nj�(t)jm>=
X
i

wi r
(i)
n (t)r

(i)
m (t) exp i

h
�(i)n (t)� �(i)m (t)

i
� rn(t)rm(t) exp i [�n(t)� �m(t)] :

(2.17)
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If after a time scale � 0 the phases
n
�(i)n (t)

o
in (2.17) are random, then averaging over

the ensemble yields a vanishing matrix element

< nj�jm> ! 0

for n 6= m, and it follows that the density matrix only keeps diagonal terms

< nj�(t)jn> = Pn(t) = r2n(t) :

We now look for the evolution of Pn(t) during times �t which are longer than � 0 but

much shorter than the macroscopic relaxation time �R

� 0 / �t� �R :

This problem is better analyzed using the interaction picture [7]. We assume that the

system Hamiltonian is written as a stationary part plus a time dependent perturbation:

H=H0 +V(t) :

We refer the perturbation theory to the eigenstates of H0

H0jn >= Enjn > ;

and assume that the perturbation V(t) has no diagonal elements and can be separated

into a rapidly �uctuating part V
0
and a slowly varying one �V. They have di¤erent

roles for the perturbed system. V
0
includes rapid �uctuations for the time scale � 0,

and is responsible for the random phases and the cancellation of o¤-diagonal elements
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of the density matrix. �V varies in time scales that are much longer, and induces

transitions between microstates which at the end, are responsible for the �nal relaxation

to equilibrium. Using t0 = 0 as the initial time, transforming from the Shrödinger to

the interaction picture yields

j >I= exp
�
i

~
H0t

�
j > ;

AI = exp

�
i

~
H0t

�
A exp

�
� i
~
H0t

�
;

for ket states and operators. It follows that time evolution of kets is dictated by the

perturbation Hamiltonian V(t):

i~
@j (t) >I

@t
= VI(t)j (t) >I ; (2.18)

where VI = exp

�
i

~
H0t

�
V exp

�
� i
~
H0t

�
is the perturbation in the interaction pic-

ture. Equation (2.18) can be formally integrated to obtain the time evolution operator

in the interaction picture, in the form

U(t; t1) = exp

�
� i
~

Z t

t1

d� VI(�)

�
; (2.19)

if [VI(t);VI(t
0)] = 0. In the general case, one has to use the Dyson series, with the

time ordering operator [7] . For �rst order perturbation theory, one can safely employ

expression (2.19) to calculate transition amplitudes and probabilities. As usual, we

employ the basis fjn >g of the eigenstates of H0. Note that diagonal matrix elements
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of � do not depend on the picture

< nj�I jn > = < nj�jn > = Pn :

In the following, we will work in the interaction picture but will drop the I subindex

in � to simplify the notation. Suppose that at time t we prepare the system in the

microstate jn >. We analyze the evolution a time �t after, that is

�(t+�t) = U(�t)�(t)Uy(�t) ; (2.20)

where

U(�t) = exp

�
� i
~

Z t+�t

t

d� VI(�)

�
: (2.21)

For the diagonal matrix element we get from (2.20):

< nj�(t+�t)jn >= �nn(t+�t) =
X
k;m

Unk(�t)�km(t)U
�
nm(�t) ;

and making the �nite di¤erence:

�nn(t+�t)� �nn(t) =
X
k;m

Unk(�t)�km(t)U
�
nm(�t) � �nn(t) : (2.22)

Now, we explicitly separate in the �rst term of the r.h.s. diagonal from o¤-diagonal

elements:

�nn(t+�t)� �nn(t) =

(X
m

jUnm(�t)j2 �mm(t)� �nn(t)
)
+

+
X
k 6=m

Unk(�t)�km(t)U
�
nm(�t) : (2.23)
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At this point, a discussion of the time scales involved is in order. As noted above,

we assume that time variation �t is such that � 0 / �t � �R, that is during this

time we get cancellation of o¤-diagonal matrix elements, due to Pauli�s random phases

assumption. But in comparison with �R, the time �t is small, and we can think in

taking the limit �t ! 0 in (2.23). Thus, discarding o¤-diagonal elements of �, and

noting that unitarity of U implies

X
m

jUmn(�t)j2 = 1 ;

one gets from (2.23)

�nn(t+�t)� �nn(t) =
X
m

�
jUnm(�t)j2 �mm(t)� jUmn(�t)j2 �nn(t)

�
; (2.24)

and dividing by the �nite �t one gets:

�nn(t+�t)� �nn(t)
�t

=
X
m

"
jUnm(�t)j2

�t
�mm(t)�

jUmn(�t)j2

�t
�nn(t)

#
: (2.25)

One then de�nes the transition rates by:

De�nition 12 Transition rates

W (m! n) � lim
�t!0

jUnm(�t)j2

�t
: (2.26)

That is, W (m! n) is de�ned as the transition probability from jm > to jn >

per unit time. Intuitively, one expects transition probabilities to increase linearly with

time for small times, so that the limit de�ned in (2.26) exists. Since diagonal elements
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are interpreted as occupation probabilities, we use the notation < nj�jn > = Pn, and

take the limit �t! 0 in the �nite di¤erence (2.25). We obtain the balance equation:

dPn
dt
(t) =

X
m

[W (m! n)Pm(t)�W (n! m)Pn(t)] ; (2.27)

where �t! 0 has to be interpreted as a �coarse-grained�limiting process, with �t�

�R , where �R is a typical macroscopic relaxation time, but�t & � 0 , with � 0 being the

time required to randomize the phases of o¤-diagonal matrix elements of the statistical

operator. Relation (2.27) is a �gain-loss�equation called Pauli Master Equation (PME).

Some properties are immediately noted:

1. A condition leading to the stationary case is given by:

W (n! m)Pn(t) =W (m! n)Pm(t) ; (2.28)

for all pairs (n;m). This condition is known as Detailed Balance for equilibrium.

Quantum mechanical transition rates satisfy

W (n! m) =W (m! n) =Wmn

i:e: the transition rate from one state to other is equal to the inverse transition,

resulting from (2.28) that equilibrium is characterized by

Pm = Pn = P ;

for all pairs of state (n;m). That is all populations are equal in equilibrium

(equiprobable condition). In the previous section, we have demonstrated that this
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situation leads to maximum entropy, with the value

�max = lnN0 ;

where N0 is the total number of states fjn >g.

2. Transition rates are calculated using time-dependent perturbation theory. One

gets expression (2.21) for the time evolution operator within the �in�nitesimal�

time interval [t; t + �t]. We will discuss the meaning of �in�nitesimal �t�as a

�coarse-graining�concept. Within �rst order perturbation theory, one writes:

U(�t) = exp

�
� i
~

Z t+�t

t

d� VI(�)

�
� 1� i

~

Z t+�t

t

d� VI(�) ;

and the corresponding amplitude for the transition jm >! jn > is given by:

< njU(�t)jm >� � i
~

Z t+�t

t

d� < njVI(�)jm >=

= � i
~

Z t+�t

t

d� < njV(�)jm > exp i!nm� ;

with the frequency !nm de�ned as:

!nm =
En � Em

~
;

since the fjn >g are eigenstates of H0. As discussed above, the perturbation

is separated into the form V(�)=V
0
(�)+ �V(� ). The term V

0
(�) �uctuates very

rapidly within times � 0 .�t and is responsible for the Pauli assumption of phase

randomization. The �secular�part �V(� ) is of slow variation compared to�t and

61



CHAPTER 2 � MANUSCRIPT

leads to the �nal relaxation at long times �R, with �t � �R. With the above

assumptions, one has:

� i
~

Z t+�t

t

d� exp i!nm� < njV0
(�)jm > ! 0 ;

yielding to:

< njU(�t)jm >� � i
~

Z t+�t

t

d� < nj�V(� )jm > exp i!nm� �

� � i
~
< nj�Vjm >

Z t+�t

t

d� exp i!nm� ;

where �V(� ) is considered as a constant for time intervals of the order of�t. Now,

integration can readily be done, leading to the transition probability:

j < njU(�t)jm > j2 = �t

~2
��< nj�Vjm >

��2D(!nm;�t) ;
with the de�nition

D(!nm;�t) �
4 sin2 (!nm�t=2)

!2nm�t
:

sually, the �nal states lie in a quasi-continuum and En � E and !nm � ! =

E � Em
~

can be considered as continuous variables, with a density of states

D(!;�t).

Conservation of energy for the transition is only obtained at the condition ! = 0,

where the distribution D(!;�t) has a peak of height�t, as a function of !. The

so called �Fermi golden rule�[1] is obtained in the limit of very long observation
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times, with:

lim
�t!1

D(!;�t) = 2� �

�
En � Em

~

�
;

and the corresponding transition probability

j < njU(�t)jm > j2 = 2��t

~
��< nj�Vjm >

��2 � (En � Em) ;

which is proportional to the observation time �t (actually, one notes that �t

cannot be arbitrarily large, since the probability is bounded by unity). The

transition rate Wmn, de�ned in (2.26), gives the Fermi�s famous equation:

Wmn =
2�

}
��< nj�Vjm >

��2 � (En � Em) ; (2.29)

which limits the transitions to states of the same energy. But formula (2.29)

is obtained when the observation time is in�nite. For �nite times, the delta

distribution acquires a �nite width, described by the density function D(!;�t),

which allows transitions between states of approximately the same energy, within
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a range �E:

Wmn =
2�

}
��< nj�Vjm >

��2 [D(!nm;�t)=h] (2.30)

PME plus golden rule (2.30) lead to an equilibrium situation which is described

by the microcanonical ensemble, where all the allowed states of approximately the

same energy, are equiprobable (see discussion of point 1 above).

3. Master equations are real and intrinsically irreversible. To show the latter prop-

erty, we follow the discussion given in [8]. We discard o¤-diagonal elements of the

Density Matrix (Pauli hypothesis), and look at variation of diagonal ones during

an in�nitesimal time interval �t [see relation (2.24)]. We have:

Pn(t+�t) =
X
m

jUnm(�t)j2 Pm(t) �
X
m

Tnm Pm(t) ;

where we have changed notation, writing Tnm for the transition probabilities, i.e.

Tnm = jUnm(�t)j2. Now we assume that the above relation is more general in

nature, with Tnm representing transition probabilities for any dynamical process,

even a classical one (for example, we may think of states in the classical Ising

model). The relation

Pn(t+�t) =
X
m

Tnm(�t) Pm(t) ; (2.31)

yields the change of probability Pn for small �t in terms of the transition prob-

abilities fTnm(�t)g, and is at the heart of the origin of master equations. Since
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Tnm and Pm are probabilities, they satisfy the relations:P
n Pn = 1 ;

P
mTnm =

P
mTmn = 1 :

(2.32)

Using (2.32), one sees that normalization of fPng does not depend on time,

namely: X
n

Pn(t+�t) =
X
m

Pm(t) = 1 ;

as it should be for a probability distribution. From (2.31) one readily obtains:

Pn(t+�t)� Pn(t) =
X
m

Tnm Pm(t) �
 X

m

Tmn

!
Pn(t) ;

where the sum in brackets is equal to unity [see relation (2.32)]. Transition rates

are de�ned as the limit

Wnm = lim
�t!0

�
Tnm
�t

�
;

assuming that this limit exists (that was the case of Fermi golden rule). The time

rate of change of Pn is then given in the form of a master equation:

d

dt
Pn(t) =

X
m

[Wnm Pm(t) �Wmn Pn(t)] ;

which is an immediate consequence of relation (2.31). Now we show that master

equations are intrinsically irreversible. Let�s assume that relation (2.31) can be

inverted:

Pm(t) =
X
m

�
T�1

�
mn

Pn(t+�t) ;
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where (T�1)mn is the inverse matrix of Tnm. Our hypothesis assumes that the

latter represents transition probabilities, that is 0 � Tnm � 1. For the inverse

matrix one should have

X
m

Tnm
�
T�1

�
mk
= �nk ;

which implies that not all the (T�1)mk are positive and less than unity. Even

if the matrix T�1 exists, its matrix elements cannot be interpreted as transition

probabilities, and master equations are irreversible.

The derivation presented here has a heuristic character, and one notes that

some assumptions may be objectionable. Subsequent works after Pauli, specially those

accomplished by Van Hove [9] and Prigogine [10], have better justi�ed the central

hypotheses. Note that a quantum system, in general, does not obey a master equation,

since the density matrix can not be considered diagonal at all times. We know that this

is not possible out of the equilibrium condition, since the microscopic time evolution

is reversible. Irreversibility is introduced through several important ingredients [11]: i)

the thermodynamic limit, that is, an in�nite number of degrees of freedom. Stationary

unperturbed states then depend on several quantum numbers in addition of the energy,

and one can introduce continuous densities of states for the description of the physical

system. One can also assume that phases of o¤-diagonal elements of the density matrix

are randomly distributed. Eventual degeneracies of the spectrum are removed by the
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perturbations, which are also of random character. In the case of the Boltzmann gas,

a macroscopic number of molecules (thermodynamic limit) is essential to attain the

molecular chaos condition; ii) short memory approximation, meaning that accumulated

random phases lead to cancellation of o¤-diagonal terms in a short time scale � 0. For

the Boltzmann gas, � 0 is of the order of the time spanning a small number of molecular

collisions, which destroy any correlation of molecular velocities; iii) coarse grained

description of time evolution. The PME is established for times �t, such that � 0 /

�t � �R, that is, PME yields the time development with a resolution limited to � 0.

The whole time evolution, for arbitrary large times, can be envisaged as a type of

Markov chain, where randomization of the phases is accomplished again and again in

the course of time.

As discussed in point 1 above, solutions of master equations at long times

agree with the postulate of equal a priori probability at equilibrium. We perceive

that the method of master equations appears as physically superior, if compared to

the ergodic theorem approach to describe the road to equilibrium. Characteristic time

scales associated to ergodicity are of the order of the so called Poincaré cycles, which are

physically meaningless for real macroscopic systems, as Boltzmann himself pointed out.

Thus, there is no dynamics involved, and no possibility of obtaining realistic relaxation

times. We are led to conclude that master equations are much more satisfactory for

deriving Statistical Mechanics.
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B 2.4.1 H-theorem of Boltzmann-Pauli

The irreversibility displayed by master equations leads to an association with the second

law of thermodynamics. Great similarities with Boltzmann transport equation can be

noted, with the assumption of molecular chaos being the counterpart of the quantum

random phase assumption of Pauli. Exploring this similarity, one can prove a quantum

H-theorem. We consider a density matrix which is �coarse grained�in time, i.e., random

perturbations have cancelled out its o¤-diagonal terms. Diagonal elements Pn satisfy

in turn, a master equation of the type given by (2.27).

De�nition 13 H function of Boltzmann-Pauli.

It is de�ned as

H �
X
n

Pn lnPn : (2.33)

Note the formal resemblance with ��, with � de�ned in (2.15) as the von

Neumann entropy. However, in H we use a truncated density matrix, since o¤-diagonal

elements are being discarded due to Pauli hypothesis. With the H-theorem, to be

proved below, one �nds that H decreases monotonically with time. In contrast, ��

displays �uctuations at very short time. After a time �t, o¤-diagonal terms cancelled

out due to accumulated random phases, and �� approaches the behavior of H. But we

know that o¤-diagonal terms reappear later on in the time evolution, if the system is not

at equilibrium. As a result, �� �uctuates around the behavior of H, the development
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of theH function representing a coarse grained behavior of��, not including short-time

entropy �uctuations.

Theorem 14 The H-theorem is stated as

d

dt
H � 0 ;

that is, H is a monotonically decreasing function up to the time when d
dt
H = 0, which

characterizes the equilibrium state.

Demonstration is straightforward if one assumes that probabilities fPng sat-

isfy a master equation. It follows from:

d

dt
H =

X
n

(1 + lnPn)
d

dt
Pn =

=
X
n

lnPn
X
m

(WnmPm �WmnPn) ; (2.34)

due to the fact that
P

n

�
d
dt
Pn
�
= 0, since probabilities are normalized. Changing

dummy indexes in the second term in the r.h.s. of (2.34), one obtains

d

dt
H =

X
n;m

ln (Pn=Pm) WnmPm = �
X
n;m

ln (Pn=Pm) WmnPn ;

where the last term was obtained changing dummy indexes again. Noting that quantum

mechanical transition rates satisfy Wnm = Wmn, one �nally writes:

d

dt
H =

1

2

X
n;m

ln (Pn=Pm)Wnm (Pm � Pn) : (2.35)
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At this stage, we use the following lemma:

Lemma 15 Let�s consider two quantities (X; Y ), which are real and positive and rep-

resent probabilities, i.e., 0 � X; Y � 1. Then, the following inequality holds:

(X � Y ) ln (Y=X) � 0 ; (2.36)

where the value 0 is obtained when X = Y .

Validity of (2.36) is self-evident, and sinceWnm � 0, we can use the inequality

in all the terms of (2.35), to get the result:

d

dt
H � 0 :

At equilibrium, all the probabilities fPng and the H function are stationary. This

condition is attained when all occupation probabilities are equal, that is Pn = P , for all

n, and the H function is constant at its minimum value. Probabilities fPng that satisfy

a master equation yield an always decreasing H function, thus providing a smooth

approach to the equilibrium state. In contrast, �� �uctuates around the values of H,

within the so called noise range most of the time. Very large �uctuations are very

rare to occur spontaneously, and for all practical purposes we may say that H and ��

are essentially identical at equilibrium, where � is a maximum. We identify � with the

macroscopic entropy at equilibrium. For an isolated system, the Fermi Golden Rule

limits quantum transitions to states of about the same energy, and at equilibrium, all

70



CHAPTER 2 � MANUSCRIPT

the occupancy probabilities of those states are equal. We have already shown in section

2.3 that this condition maximizes �. As remarked by Boltzmann, the H-theorem gives

a statistical interpretation of the Second Law. In the next chapter, we will present

the theory for equilibrium ensembles and will develop in full the connections with the

macroscopic properties described by classical Thermodynamics.
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